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Abstract

Reliable plasma thermodynamic and transport properties are required for the numerical simulation of thermal

plasma systems. Although many databases for the thermal plasma properties at the local thermodynamic equilibrium

(LTE) state have been compiled, the database for the two-temperature (2-T) plasma is still far from completeness. There

exits considerable confusion in the literature concerning how to calculate the thermodynamic and transport properties,

including the reactive thermal conductivity, for the 2-T plasma. In this paper, a detailed derivation for the reactive

thermal conductivity of the 2-T argon plasma is presented using two different approaches. The present calculated results

for the reactive thermal conductivity are identical to those due to Hsu [5] for the special case of LTE plasma, but are

different when the electron temperature is higher than the heavy-particle temperature, the difference increases with in-

creasing electron/heavy-particle temperature ratio, hð¼ Te=ThÞ, and becomes quite significant at high h.
� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Reliable data of plasma thermodynamic and trans-

port properties are required for the numerical simulation

of thermal plasma systems. The databases concerning

the plasma properties at the local thermodynamic

equilibrium (LTE) state have been compiled by different

authors or research groups (e.g., [1–4]). Sometimes the

thermal plasma may deviate from the LTE state, espe-

cially in the region near a cold wall (including electrodes)

or near the edge of a thermal plasma jet. For such cases

the plasma in the non-LTE state is often treated as a

two-temperature (2-T) plasma [4], in which two different

plasma temperatures, i.e., the electron temperature (Te)
and the heavy-particle temperature (Th), are employed to

characterize the plasma, whereas Te may be equal to or

higher than Th. Hence, the calculation of 2-T plasma

properties attracts attention of many researchers [5–9],

but so far no commonly accepted 2-T plasma property

databases have been established. There still exists con-

siderable confusion even in the calculation method for

the plasma composition, the species diffusion velocities

or the reactive thermal conductivity of the 2-T plasma.

Perhaps for this reason, the authors of Ref. [9] do not

touch the calculation of the reactive thermal conduc-

tivity in their study of transport coefficients, and confine

themselves to calculating the translational thermal con-

ductivity components of the 2-T argon plasma in their

newly published paper. Hence, it is necessary to re-

examine carefully what should be modified in the cal-

culation procedure of the properties for the 2-T plasma

in comparison with the LTE plasma.

The reactive thermal conductivity is associated with

the energy transport caused by the diffusion of different

gas species in a gas mixture due to the existence of

concentration and temperature gradients. Since the local

composition of the gas mixture depends on the local gas

temperature(s) for a fixed pressure and at chemical

equilibrium state, the energy transport caused by the

diffusive gas species can be related to the temperature

gradient in the gas mixture and thus the reactive thermal

conductivity can be defined and calculated [10]. The
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calculation method of the reactive thermal conductivity

for a non-ionized reacting gas mixture in local chemical

equilibrium state was proposed in Ref. [10]. This ap-

proach was successfully extended to LTE plasmas in

Refs. [1–3], and was also employed in Refs. [5–8] to cal-

culate the reactive thermal conductivity of the 2-T argon

plasma. However, there still exist at least two problems

which are not well resolved in available studies con-

cerning the calculation of the reactive thermal conduc-

tivity for the 2-T plasma. The first is associated with the

employment of the Saha equation modified to the 2-T

plasma and the second is related with the employment of

the expressions for the diffusion velocities of different

species under 2-T plasma conditions. The correct form

of the 2-T plasma Saha equation for the composition

calculation and the correct expressions for the species

diffusion velocities under 2-T plasma conditions were

discussed in some details, respectively, in our previous

papers [11,12]. Having had the results obtained in Refs.

[11,12], the present paper will focus to the calculation of

reactive thermal conductivity of the 2-T argon plasma.

So far two different approaches were used to calcu-

late the reactive thermal conductivity for the 2-T plasma.

The first one was proposed in Ref. [6], in which the ex-

pressions of the reactive thermal conductivity were de-

rived for the 2-T plasma by using its relationship to the

species number densities and their derivatives with re-

spect to plasma temperature(s). The second one [5,7] was

based on the employment of the modified form of the

Van�t Hoff�s equation (or chemical equilibrium constant)

as used in [1,10]. Although these two approaches seem to

be equally feasible, their final expressions for the reactive

thermal conductivity of 2-T plasma are different from

each other, in their formulations. Hence, it is interesting

to know whether the calculated results are identical for

the reactive thermal conductivity obtained using the two

different approaches.

In this paper, detailed derivations are presented

concerning the reactive thermal conductivity for the 2-T

plasma using the two different approaches mentioned

above, and typical calculated results will be presented

for the reactive thermal conductivity of the 2-T argon

plasma and compared with those obtained in previous

studies.

2. Definition of the reactive thermal conductivity

Suppose a stationary plasma consisting of N species

and carrying temperature and concentration gradients,

Nomenclature

Ar argon atom

Arþ singly-ionized argon ion

Arþþ doubly-ionized argon ion

Da
ij ambipolar diffusion coefficient concerning

the ith and jth species

Ei;Ed effective ionization energy of singly- and

doubly-ionized ions with respect to the atom

ground state

e electron

h Planck constant

h�j enthalpy per particle for the jth species

Dh�r enthalpy variation in the rth reaction

kB Boltzmann constant

Kp;r chemical equilibrium constant for the rth
reaction

m particle mass

n; nj total number density; number density of the

jth species

p; pj total pressure; partial pressure of the jth
species

q
*

energy flux vector in the gas mixture

q
*

R energy flux vector caused by the species

diffusion in the gas mixture

T ; Te; Th gas temperature; electron temperature; heavy-

particle temperature

xe mole fraction of electrons ðxe ¼ ne=nÞ

z0ex;j partition function for the internal excitation

of the jth heavy particles

Greek symbols

h electron/heavy-particle temperature ratio

ðh ¼ Te=ThÞ
kre; krh reactive thermal conductivity components

related to rTe and rTh
kR total reactive thermal conductivity defined

with respect to rTh
ktr;j translational thermal conductivity due to

the jth species

mrj stoichiometric coefficient of the jth species

in the rth reaction.

q gas density

w
*

j particle flux vector of the jth species in the

gas mixture

Subscripts

1 or a atom

2 or d doubly-ionized ion

3 or i singly-ionized ion

4 or e electron

h heavy-particle (atom, ion)

r the rth reaction, reactive

R reactive
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the energy flux from the region with higher temperatures

to the region with lower temperatures can be calculated

by

q
* ¼ �

X
s

ktr;srTs þ
X
s

h�sw
*

s ð1Þ

where ktr;s is the translational thermal conductivity

component associated with the kinetic energy transport

of the sth species, Ts is the characteristic temperature of

the sth species. h�s is the enthalpy per particle, and w
*

s is

the particle flux vector due to the diffusion of the sth
species [1/(m2 s)]. Similarly to the case studied in [10] for

the non-ionized gas mixture, the reactive thermal con-

ductivity for a plasma can be defined by

q
*

R ¼
X
s

h�sw
*

s ¼ �kR;jrTj ð2Þ

where q
*

R is the additional energy flux caused by the

diffusive transport due to various gas species, Tj is of

the jth characteristic temperature, and kR;j is the re-

active thermal conductivity defined with respect to the

temperature gradient rTj. For the 2-T plasma studied

here, there exist generally two different characteristic

temperatures, i.e. the electron temperature Te and the

heavy-particle (atom, ion, etc.) temperature Th. Hence,

the choice of the temperature gradient rTj in Eq. (2)

should be clearly indicated when the calculated values

of the reactive thermal conductivity are presented,

although the calculated results with respect to rTh can

be easily converted to those with respect to rTe for a

fixed electron/heavy-particle temperature ratio. In this

paper, the heavy-particle temperature gradient rTh is

chosen to define the reactive thermal conductivity of

the 2-T plasma, and this reactive thermal conductivity

will be denoted by kR. Eq. (2) can thus be rewritten as

q
*

R ¼
X
s

h�sw
*

s ¼ �kRrTh ð3Þ

In order to calculate the reactive thermal conductivity

as the quotient of �
P

s h
�
sw
*

s divided by rTh, one needs

obviously to calculate the particle flux vectors ws

*

for

each species. It is expected that the calculation of the

reactive thermal conductivity will involve the gas pres-

sure, the plasma composition, the electron temperature

and heavy-particle temperature, the reaction heats of

the ionization-recombination reactions, and the multi-

component diffusion coefficients.

3. Theoretical derivation with the first approach

3.1. Description of the 2-T argon plasma system

For simplicity, let us consider a 2-T argon plasma

system consisting of four components, i.e. argon atoms,

singly-ionized ions, doubly-ionized ions and electrons.

The singly- and doubly-ionized reactions taking place

simultaneously in such a plasma system can be expressed

as follows:

Ar ¼ Arþ þ e ð4aÞ

Arþþ ¼ Arþ � e ð4bÞ

where Ar, Arþþ, Arþ and e represent argon atoms,

doubly-ionized ions, singly-ionized ions and electrons,

and will be denoted with subscripts 1, 2, 3 and 4 or a, d, i

and e, respectively. It is noted that the species Ar only

appears in Eq. (4a), whereas the species Arþþ only ap-

pears in Eq. (4b).

3.2. The modified Saha equations for the 2-T argon

plasma

Using correct 2-T plasma Saha equations is the

prerequisite for the calculation of the number densities

of the gas species, and the employment of the Saha

equations will affect the calculated results of the ther-

modynamic and transport properties of the plasma. In

the literature, two different forms of Saha equation

were employed for the 2-T plasma. This subject was

discussed in some detail in out previous paper [11],

with a rigorous thermodynamic derivation of the Saha

equations modified to a 2-T plasma system. The correct

expressions of the Saha equation (or mass action law)

for the 2-T argon plasma system with ionization reac-

tions described by Eqs. (4a) and (4b) can be expressed

as

neni
na

¼
2z0ex;i
z0ex;a

2pmekBTe
h2

� �3=2

exp

�
� Ei

kBTe

�
ð5aÞ

nend
ni

¼
2z0ex;d
z0ex;i

2pmekBTe
h2

� �3=2

exp

�
� Ed � Ei

kBTe

�
ð5bÞ

where z0ex;a, z0ex;i and z0ex;d are the partition functions

for the internal excitation of atoms, singly-ionized ions

and doubly-ionized ions, while Ei and Ed are the effec-

tive ionization energy (including the lowering of the

ionization energy [4]) of singly-ionized ions and doubly-

ionized ions with respect to the atom ground state. Eqs.

(5a) and (5b) are so-called 2-T Saha equations. On the

other hand, the following Saha equations have been

employed for the calculation of 2-T plasma properties

in Refs. [5,6,8]:

ne
ni
na

� �1=h

¼
2z0ex;i
z0ex;a

2pmekBTe
h2

� �3=2

exp

�
� Ei

kBTe

�
ð6aÞ

ne
nd
ni

� �1=h

¼
2z0ex;d
z0ex;i

2pmekBTe
h2

� �3=2

exp

�
� Ed � Ei

kBTe

�
ð6bÞ
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where h is the electron/heavy-particle temperature ratio,

i.e. h ¼ Te=Th. However, the thermodynamic derivation

in [13] for Eqs. (6a) and (6b) has been proved to be in-

correct [11]. As a result, the 2-T plasma composition and

properties based on employing Eqs. (6a) and (6b) are

questionable.

3.3. Expressions for the diffusion velocities

The expressions for the diffusion velocities or particle

fluxes under 2-T plasma conditions are also required for

the calculation the reactive thermal conductivity. In Ref.

[5], the expression of the diffusion driving force for the

LTE plasmas was employed without modification for

calculating the diffusion velocities of the different gas

species in the 2-T argon plasma. Consequently, the

correctness of the calculated results of the diffusion ve-

locities or particle fluxes and thus the reactive thermal

conductivity for the 2-T argon plasma presented in Ref.

[5] is questionable. In Ref. [12], the expressions for the

diffusion driving force, ambipolar diffusion coefficients,

ambipolar thermal diffusion coefficients, diffusion ve-

locities and the electric conductivity of the 2-T plasma

were presented. The research results presented in Ref.

[12] can be summarized as follows: (i) The expression for

the diffusion driving force under 2-T plasma conditions

is different from that for the LTE plasmas [1,5] or for the

non-ionized reacting gas mixtures [10]. (ii) The newly

derived expressions for the diffusion driving force, the

ambipolar diffusion coefficients, the ambipolar thermal

diffusion coefficients, the diffusion velocities and the

electric conductivity for the 2-T plasma can be reduced

to their counterparts for the LTE plasma or for the

single-temperature gas mixture, as expected.

Based on the derivation presented in Ref. [12], if we

neglect the influence due to the thermal diffusion and

external force (except for internal electric field), the

number flux vector of the sth species for a fixed total

pressure can be written as

w
*

s ¼
n

qkBTs

X
j

Ts
Tj
mjDa

sjrpj ð7Þ

where Da
sj is the ambipolar diffusion coefficient [12].

When the plasma system is in a quasi-steady state,

the following relations will be applicable to the reactions

described by Eqs. (4a) and (4b):

w
*

3 ¼ �ðw
*

1 þ w
*

2Þ ð8aÞ

w
*

4 ¼ 2w
*

2 þ w
*

3 ¼ �w
*

1 þ w
*

2 ð8bÞ

Substituting Eqs. (8a) and (8b) into Eq. (3), one can

obtain the following expression:

q
*

R ¼
X4
s¼1

h�sw
*

s ¼ �
X2
r¼1

Dh�rw
*

r ¼ �kRrTh ð9Þ

where Dh�r is the enthalpy variation of the rth reaction

described by Eq. (4a) ðr ¼ 1Þ or Eq. (4b) ðr ¼ 2Þ, and
can be expressed as

Dh�1 ¼ h�i þ h�e � h�a

¼ 5

2
kBTe þ kBT 2

e

o ln z0ex;i
oTe

 
�
o ln z0ex;a

oTe

!
þ Ei ð10aÞ

Dh�2 ¼ h�i � h�e � h�d

¼ � 5

2
kBTe

"
þ kBT 2

e

o ln z0ex;d
oTe

 
�
o ln z0ex;i
oTe

!

þ Ed � Ei

#
ð10bÞ

in which

h�a ¼
5

2
kBTh þ kBT 2

e

o ln z0ex;a
oTe

ð11aÞ

h�i ¼
5

2
kBTh þ kBT 2

e

o ln z0ex;i
oTe

þ Ei ð11bÞ

h�d ¼
5

2
kBTh þ kBT 2

e

o ln z0ex;d
oTe

þ Ed ð11cÞ

h�e ¼
5

2
kBTe ð11dÞ

denote the enthalpies per particle for atoms, singly-

ionized ions, doubly-ionized ions and electrons, respec-

tively.

3.4. Derivation of the reactive thermal conductivity

(approach 1)

Now, a detailed derivation will be given for the re-

active thermal conductivity of the 2-T argon plasma

using the approach similar to that presented in Ref. [6].

It should be pointed out that a three-component gas was

assumed in Ref. [6], i.e. doubly-ionized ionization is

completely neglected. Although this assumption is valid

at lower plasma temperatures where only single ioniza-

tion is important, it is not applicable to higher plasma

temperatures where both single ionization and double

ionization cannot be ignored. Here, the plasma system is

assumed to be composed of four components and thus

the two ionization–recombination reactions described

by Eqs. (4a) and (4b) are involved.

Substituting Eq. (7) into Eq. (9), we have

q
*

R ¼ �
X2
r¼1

Dh�rw
*

r

¼ �
X2
r¼1

n
qkBTh

Dh�r
X4
j¼1

Th
Tj

mjDa
rjrpj ð12Þ
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As the partial pressure of the jth species, pj, is the

function of the electron temperature and the heavy

particle temperature for a fixed total pressure, rpj can
be expressed as

rpj ¼
opj
oTe

rTe þ
opj
oTh

rTh ðj ¼ 1; 2; 3; 4Þ ð13Þ

Substituting Eq. (13) into Eq. (12) results in

q
*

R ¼ �
X2
r¼1

n
qkBTh

Dh�r
X3
j¼1

mjDa
rj

opj
oTe

 
þ Th

Te
meDa

re

ope
oTe

!
rTe

�
X2
r¼1

n
qkBTh

Dh�r
X3
j¼1

mjDa
rj

opj
oTh

 
þ Th

Te
meDa

re

ope
oTh

!
rTh

¼ �krerTe � krhrTh ð14Þ

where

kre ¼
X2
r¼1

n
qkBTh

Dh�r
X3
j¼1

mjDa
rj

opj
oTe

 
þ Th

Te
meDa

re

ope
oTe

!

ð15aÞ

krh ¼
X2
r¼1

n
qkBTh

Dh�r
X3
j¼1

mjDa
rj

opj
oTh

 
þ Th

Te
meDa

re

ope
oTh

!

ð15bÞ

can be treated as the reactive thermal conductivity

components related to rTe and rTh, respectively.
Having Eqs. (15a) and (15b), the subsequent task is

to derive the expressions for opj=oTe ðj ¼ 1; 2; 3Þ,
ope=oTe, opj=oTh ðj ¼ 1; 2; 3Þ and ope=oTh. The plasma

composition can be determined by the set of equations

including the Saha equations (5a) and (5b), the Dalton�s
law and the quasi-neutrality condition of the plasma.

The Dalton�s law gives

p ¼
X4
s¼1

ps ¼
X3
s¼1

ps þ pe ð16Þ

For a fixed total pressure, the partial derivatives of the

partial pressures with respect to Te or Th can be obtained

from Eq. (16) as:

X3
s¼1

ops
oTe

þ ope
oTe

¼ 0 ð17aÞ

X3
s¼1

ops
oTh

þ ope
oTh

¼ 0 ð17bÞ

Then, the Saha equations (5a) and (5b) for the 2-T argon

plasma can be rewritten as

pepi
pa

¼
ð2kBTeÞz0ex;i

z0ex;a

2pmekBTe
h2

� �3
2

exp

�
� Ei

kBTe

�
ð18aÞ

pepd
pi

¼
ð2kBTeÞz0ex;d

z0ex;i

2pmekBTe
h2

� �3
2

exp

�
� Ed � Ei

kBTe

�
ð18bÞ

Taking logarithms of both sides of Eqs. (18a) and (18a),

and calculating their partial differentiation with respect

to Te or Th, we get

1

p4

op4
oTe

þ 1

p3

op3
oTe

� 1

p1

op1
oTe

¼ 5

2

1

Te
þ
o ln z0ex;i
oTe

�
o ln z0ex;a

oTe
þ Ei

kBT 2
e

ð19aÞ

1

p4

op4
oTe

þ 1

p2

op2
oTe

� 1

p3

op3
oTe

¼ 5

2

1

Te
þ
o ln z0ex;d

oTe

�
o ln z0ex;i
oTe

þ Ed � Ei

kBT 2
e

ð19bÞ

1

p4

op4
oTh

þ 1

p3

op3
oTh

� 1

p1

op1
oTh

¼ 0 ð19cÞ

1

p4

op4
oTh

þ 1

p2

op2
oTh

� 1

p3

op3
oTh

¼ 0 ð19dÞ

Eqs. (17a), (19a) and (19b) and Eqs. (17b), (19c) and

(19d) constitute two sets of linear equations as follows:

AX1 ¼ b1
ope
oTe

þ b2 ð20aÞ

AX2 ¼ b1
ope
oTh

ð20bÞ

where

A ¼
1 1 1

1=p1 0 �1=p3
0 �1=p2 1=p3

2
64

3
75;

X1 ¼
op1=oTe
op2=oTe
op3=oTe

2
64

3
75; X2 ¼

op1=oTh
op2=oTh
op3=oTh

2
64

3
75 ð21aÞ

b1 ¼
�1

1=pe
1=pe

2
4

3
5; b2 ¼

0

�C1

�C2

2
4

3
5 ð21bÞ

and

C1 ¼
5

2

1

Te
þ
o ln z0ex;i
oTe

�
o ln z0ex;a

oTe
þ Ei

kBT 2
e

ð22aÞ

C2 ¼
5

2

1

Te
þ
o ln z0ex;d

oTe
�
o ln z0ex;i
oTe

þ Ed � Ei

kBT 2
e

ð22bÞ

According to Cramer�s rule, the solution of Eq. (20a)

can be expressed as

op1
oTe

¼ jA1
1j

jAj þ
jA2

1j
jAj ð23aÞ
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op2
oTe

¼ jA1
2j

jAj þ
jA2

2j
jAj ð23bÞ

op3
oTe

¼ jA1
3j

jAj þ
jA2

3j
jAj ð23cÞ

where

jA1
1j ¼

1

p2p3

�
� 2

p3p4
� 1

p2p4

�
ope
oTe

ð24aÞ

jA2
1j ¼

1

p2

�
þ 1

p3

�
C1 þ

C2

p3
ð24bÞ

jA1
2j ¼

1

p1p3

�
þ 2

p3p4
þ 1

p1p4

�
ope
oTe

ð24cÞ

jA2
2j ¼ �C1

p3
� 1

p1

�
þ 1

p3

�
C2 ð24dÞ

jA1
3j ¼

1

p2p4

�
� 1

p1p4
þ 1

p1p2

�
ope
oTe

ð24eÞ

jA2
3j ¼ �C1

p2
þ C2

p1
ð24fÞ

Similarly, the solution of Eq. (20b) is:

op1
oTh

¼
1

p2p3
� 2

p3p4
� 1

p2p4

� �
jAj

ope
oTh

ð25aÞ

op2
oTh

¼
1

p1p3
þ 2

p3p4
þ 1

p1p4

� �
jAj

ope
oTh

ð25bÞ

op3
oTh

¼
1

p2p4
� 1

p1p4
þ 1

p1p2

� �
jAj

ope
oTh

ð25cÞ

where

jAj ¼ � 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

�
ð25dÞ

Substituting Eqs. (23a)–(23c) into Eq. (15a) and substi-

tuting Eqs. (25a)–(25c) into Eq. (15b), the expressions

for kre and krh in Eq. (14) can be rewritten as

kre ¼
nmh

qkBTh
Dh�1 A1Da

11

���
þ A2Da

12 þ A3Da
13

þ me

hmh

Da
14

�
ope
oTe

þ ðB1Da
11 þ B2Da

12 þ B3Da
13Þ
�

þ Dh�2 A1Da
21

��
þ A2Da

22 þ A3Da
23 þ

me

hmh

Da
24

�
ope
oTe

þ ðB1Da
21 þ B2Da

22 þ B3Da
23Þ
��

ð26aÞ

krh ¼
nmh

qkBTh
Dh�1 A1Da

11

���
þ A2Da

12 þ A3Da
13

þ me

hmh

Da
14

�
ope
oTh

�
þ Dh�2 A1Da

21

��
þ A2Da

22

þ A3Da
23 þ

me

hmh

Da
24

�
ope
oTh

��
ð26bÞ

where

A1 ¼
1

p2p3

�
� 2

p3p4
� 1

p2p4

� ��
� 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

��
ð27aÞ

A2 ¼
1

p1p3

�
þ 2

p3p4
þ 1

p1p4

� ��
� 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

��
ð27bÞ

A3 ¼
1

p2p4

�
� 1

p1p4
þ 1

p1p2

� ��
� 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

��
ð27cÞ

B1 ¼
1

p2

��
þ 1

p3

�
C1 þ

C2

p3

� ��
� 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

��
ð27dÞ

B2 ¼
�
� C1

p3
� 1

p1

�
þ 1

p3

�
C2

� ��
� 1

p2p3

�

þ 1

p1p3
þ 1

p1p2

��
ð27eÞ

B3 ¼
�
� C1

p2
þ C2

p1

� ��
� 1

p2p3

�
þ 1

p1p3
þ 1

p1p2

��
ð27fÞ

The partial pressure of electrons can be expressed by

pe ¼ nekBTe ð28Þ

For a fixed total pressure,

ope
oTe

¼ kBTe
one
oTe

þ nekB ð29aÞ

ope
oTh

¼ kBTe
one
oTh

ð29bÞ

Substituting Eq. (29a) into Eq. (26a) and substituting

Eq. (29b) into Eq. (26b), results in

kre ¼
nmh

qkBTh
Dh�1 A1Da

11

���
þ A2Da

12 þ A3Da
13 þ

me

hmh

Da
14

�

	 kBTe
one
oTe

�
þ nekB

�
þ ðB1D

a
11 þ B2D

a
12 þ B3D

a
13Þ
�

þ Dh�2 A1Da
21

��
þ A2Da

22 þ A3Da
23 þ

me

hmh

Da
24

�

	 kBTe
one
oTe

�
þ nekB

�
þ B1D

a
21

�
þ B2D

a
22 þ B3D

a
23

���
ð30aÞ
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krh ¼
nmh

qkBTh
Dh�1 A1Da

11

���
þ A2Da

12 þ A3Da
13 þ

me

hmh

Da
14

�

	 kBTe
one
oTh

�
þ Dh�2 A1Da

21

��
þ A2Da

22 þ A3Da
23

þ me

hmh

Da
24

�
kBTe

one
oTh

��
ð30bÞ

It can be seen from Eqs. (30a) and (30b) that in order to

calculate the reactive thermal conductivity, the next step

should constitute the relation between one=oTe, one=oTh
and other plasma parameters, such as the number den-

sities of the gas species, the electron temperature, heavy-

particle temperature, and so on.

As is well known, the quasi-neutrality condition of

the plasma gives

ni þ 2nd � ne ¼ 0 ð31Þ

Another auxiliary condition is the following relation

between the number densities:

n ¼ na þ ni þ nd þ ne ð32Þ

From Eqs. (31) and (32) the following partial differen-

tiations with respect to Te or Th can be obtained:

oni
oTe

þ 2
ond
oTe

� one
oTe

¼ 0 ð33aÞ

oni
oTh

þ 2
ond
oTh

� one
oTh

¼ 0 ð33bÞ

ona
oTe

þ oni
oTe

þ ond
oTe

þ one
oTe

¼ on
oTe

ð33cÞ

ona
oTh

þ oni
oTh

þ ond
oTh

þ one
oTh

¼ on
oTh

ð33dÞ

For the 2-T argon plasma system, the relation between

the total pressure and the particle number densities can

be expressed as

p ¼ nekBTe þ
X3
s¼1

nskBTh ¼ nkBTh ðh½ � 1Þxe þ 1� ð34Þ

where xeð¼ ne=nÞ is the mole fraction of electrons in the

mixture. For a fixed total pressure, partial differentia-

tions on=oTe and on=oTh can be obtained from Eq. (34)

as follows:

on
oTe

¼ �ðh � 1Þ one
oTe

� ne
Th

ð35aÞ

on
oTh

¼ nðxe � 1Þ 1

Th
� ðh � 1Þ one

oTh
ð35bÞ

On the other hand, the following partial differentia-

tion expressions can be obtained from the 2-T Saha

equations, i.e. Eqs. (5a) and (5b):

1

ne

one
oTe

þ 1

ni

oni
oTe

� 1

na

ona
oTe

¼ D1 ð36aÞ

1

ne

one
oTe

þ 1

nd

ond
oTe

� 1

ni

oni
oTe

¼ D2 ð36bÞ

1

ne

one
oTh

þ 1

ni

oni
oTh

� 1

na

ona
oTh

¼ 0 ð36cÞ

1

ne

one
oTh

þ 1

nd

ond
oTh

� 1

ni

oni
oTh

¼ 0 ð36dÞ

where

D1 ¼
3

2

1

Te
þ
o ln z0ex;i
oTe

�
o ln z0ex;a

oTe
þ Ei

kBT 2
e

ð37aÞ

D2 ¼
3

2

1

Te
þ
o ln z0ex;d

oTe
�
o ln z0ex;i
oTe

þ Ed � Ei

kBT 2
e

ð37bÞ

After substituting on=Te given by Eq. (35a) into Eq. (33c)

and on=oTh by Eq. (35b) into Eq. (33d), respectively, the

following two sets of linear equations with onj=oTe or

onj=oThðj ¼ 1; 2; 3; 4Þ as the dependent variables can be

obtained:

FY1 ¼ b3 ð38aÞ

FY2 ¼ b4 ð38bÞ

where

F ¼

1 1 1 h

0 1 2 �1

�1=na 1=ni 0 1=ne
0 �1=ni 1=nd 1=ne

2
6664

3
7775;

Y1 ¼

ona=oTe
oni=oTe
ond=oTe
one=oTe

2
6664

3
7775; Y2 ¼

ona=oTh
oni=oTh
ond=oTh
one=oTh

2
6664

3
7775 ð39aÞ

b3 ¼

�ne=Th
0

D1

D2

2
664

3
775; b4 ¼

nðxe � 1Þ=Th
0

0

0

2
664

3
775 ð39bÞ

According to Cramer�s rule, the solutions of the Eqs.

(38a) and (38b) can be expressed as follows:

one
oTe

¼ jF1j
jF j ð40aÞ

one
oTh

¼ jF2j
jF j ð40bÞ

where jF j denotes the determinant of matrix F , whereas
the determinants jF1j and jF2j can be expressed as

jF1j ¼

1 1 1 �ne=Th
0 1 2 0

�1=na 1=ni 0 D1

0 �1=ni 1=nd D2

��������

��������
ð41aÞ
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jF2j ¼

1 1 1 nðxe � 1Þ=Th
0 1 2 0

�1=na 1=ni 0 0
0 �1=ni 1=nd 0

��������

��������
ð41bÞ

Substituting one=oTe and one=oTh obtained from the

solution of Eqs. (40a) and (40b) into Eqs. (30a) and

(30b), the values of kre and krh can be calculated.

For a given electron/heavy-particle temperature

ratio, i.e. h ¼ Te=Th ¼ const:, the reactive thermal con-

ductivity of the 2-T argon plasma, defined with respect

to the gradient of heavy-particle temperature, rTh,
could be calculated by

kR ¼ ðkrh þ hkreÞ ð42Þ

4. Theoretical derivation (the second approach)

4.1. The Van’t Hoff’s equation modified to the 2-T argon
plasma

In a way similar to that used in Ref. [10] for a non-

ionized gas, the equilibrium constant for each of the

reactions (18a) and (18b) can be defined as

Kp;r ¼
Y4
j¼1

pmrj
j ðr ¼ 1; 2Þ ð43Þ

where pj ðj ¼ 1; 2; 3; 4Þ is the partial pressure of the jth
component, whereas m11 ¼ �1, m12 ¼ 0, m13 ¼ 1, m14 ¼ 1

for the reaction (18a); m21 ¼ 0, m22 ¼ �1, m23 ¼ 1

m24 ¼ �1 for the reaction (18b). Taking logarithms on

both sides of Eq. (43) and then calculate their gradients,

we obtain

rðln Kp;rÞ ¼
X4
j¼1

mrjr ln pj ðr ¼ 1; 2Þ ð44Þ

The left-hand sides of Eq. (44) can be expressed as

rðln Kp;1Þ ¼
o

oTe
ðln Kp;1ÞrTe þ

o

oTh
ðln Kp;1ÞrTh ð45aÞ

rðln Kp;2Þ ¼
o

oTe
ðln Kp;2ÞrTe þ

o

oTh
ðln Kp;2ÞrTh ð45bÞ

While the right-hand side of Eq. (44) can be calculated

using Eqs. (19a)–(19d). Thus the following Van�t Hoff

equations modified to the 2-T argon plasma can be

obtained:

o ln Kp;1

oTe
¼ Dh�1

kBT 2
e

;
o ln Kp;1

oTh
¼ 0 ð46aÞ

o ln Kp;2

oTe
¼ Dh�2

kBT 2
e

;
o ln Kp;2

oTh
¼ 0 ð46bÞ

where Eqs. (10a) and (10b) have been used.

4.2. Derivation of the reactive thermal conductivity

(approach 2)

In Eq. (7), if we define Asj as the element of the matrix

A as

Asj ¼
n

qkBTj
mjDa

sj ðs; j ¼ 1; 2; 3; 4Þ ð47Þ

then, according to Cramer�s rule, one can obtain:

rpj ¼
jAjj
jAj ðj ¼ 1; 2; 3; 4Þ ð48Þ

where jAjj and jAj are the determinants of the matrix Aj

and A. The determinant jAjj can be written as

jA1j ¼

w
*

1 A12 A13 A14

w
*

2 A22 A23 A24

w
*

3 A32 A33 A34

w
*

4 A42 A43 A44

������������

������������

jA2j ¼

A11 w
*

1 A13 A14

A21 w
*

2 A23 A24

A31 w
*

3 A33 A34

A41 w
*

4 A43 A44

������������

������������
ð49aÞ

jA3j ¼

A11 A12 w
*

1 A14

A21 A22 w
*

2 A24

A31 A32 w
*

3 A34

A41 A42 w
*

4 A44

������������

������������

jA4j ¼

A11 A12 A13 w
*

1

A21 A22 A23 w
*

2

A31 A32 A33 w
*

3

A41 A42 A43 w
*

4

������������

������������
ð49bÞ

By use of Eqs. (8a) and (8b), Eqs. (49a) and (49b) can be

rewritten as

jA1j ¼

1 A12 A13 A14

0 A22 A23 A24

�1 A32 A33 A34

�1 A42 A43 A44

���������

���������
w
*

1 þ

0 A12 A13 A14

1 A22 A23 A24

�1 A32 A33 A34

1 A42 A43 A44

���������

���������
w
*

2

¼ jA1
1jw

*

1 þ jA2
1jw

*

2 ð50aÞ

jA2j ¼

A11 1 A13 A14

A21 0 A23 A24

A31 �1 A33 A34

A41 �1 A43 A44

���������

���������
w
*

1 þ

A11 0 A13 A14

A21 1 A23 A24

A31 �1 A33 A34

A41 1 A43 A44

���������

���������
w
*

2

¼ jA1
2jw

*

1 þ jA2
2jw

*

2 ð50bÞ

1450 X. Chen, H.-P. Li / International Journal of Heat and Mass Transfer 46 (2003) 1443–1454



jA3j ¼

A11 A12 1 A14

A21 A22 0 A24

A31 A32 �1 A34

A41 A42 �1 A44

�����������

�����������
w
*

1 þ

A11 A12 0 A14

A21 A22 1 A24

A31 A32 �1 A34

A41 A42 1 A44

�����������

�����������
w
*

2

¼ jA1
3jw

*

1 þ jA2
3jw

*

2 ð50cÞ

jA4j ¼

A11 A12 A13 1

A21 A22 A23 0

A31 A32 A33 �1

A41 A42 A43 �1

���������

���������
w
*

1 þ

A11 A12 A13 0

A21 A22 A23 1

A31 A32 A33 �1

A41 A42 A43 1

���������

���������
w
*

2

¼ jA1
4jw

*

1 þ jA2
4jw

*

2 ð50dÞ

Substituting Eqs. (48), (49a), (49b), (50a)–(50d) into Eq.

(44), we can get

o ln Kp;1

oTe
hrTh ¼

1

jAj
X4
j¼1

m1jjA1
j j

pj
w
*

1 þ
1

jAj
X4
j¼1

m1jjA2
j j

p1
w
*

2

ð51aÞ

o ln Kp;2

oTe
hrTh ¼

1

jAj
X4
j¼1

m2jjA1
j j

pj
w
*

1 þ
1

jAj
X4
j¼1

m2jjA2
j j

pj
w
*

2

ð51bÞ

From Eqs. (46a), (46b), (51a) and (51b), the following

set of linear equations can be obtained:

hDh�1
kBT 2

e

rTh ¼ H11w
*

1 þ H12w
*

2 ð52aÞ

hDh�2
kBT 2

e

rTh ¼ H21w
*

1 þ H22w
*

2 ð52bÞ

where Hijði; j ¼ 1; 2Þ is the element of the matrix H and

can be expressed as

H11 ¼
1

jAj
X4
j¼1

m1jjA1
j j

pj
ð53aÞ

H12 ¼
1

jAj
X4
j¼1

m1jjA2
j j

pj
ð53bÞ

H21 ¼
1

jAj
X4
j¼1

m2jjA1
j j

pj
ð53cÞ

H22 ¼
1

jAj
X4
j¼1

m2jjA2
j j

pj
ð53dÞ

the determinant of the matrix H is

jH j ¼ H11 H12

H21 H22

����
���� ð54Þ

According to Cramer�s rule, the solutions of Eqs. (52a)

and (52b) are

w
*

1 ¼
h

kBT 2
e

Dh�1 H12

Dh�2 H22

����
����

jH j rTh ð55aÞ

w
*

2 ¼
h

kBT 2
e

H11 Dh�1
H21 Dh�2

����
����

jH j rTh ð55bÞ

Substituting Eqs. (55a) and (55b) into Eq. (9), we ob-

tain

kR ¼ ½Dh�1w
*

1 þ Dh�2w
*

2�=rTh

¼ hDh�1
kBT 2

e

Dh�1 H12

Dh�2 H22

����
����

jH j þ hDh�2
kBT 2

e

H11 Dh�1
H21 Dh�2

����
����

jH j ð56aÞ

or

kR ¼ � h
kBT 2

e

0 Dh�1 Dh�2
Dh�1 H11 H12

Dh�2 H21 H22

������
������
,

H11 H12

H21 H22

����
���� ð56bÞ

5. Results and discussion

The expressions derived in Sections 3 and 4 using two

different approaches, i.e. Eqs. (42) and (56b) and their

auxiliary equations, have been used to calculate the re-

active thermal conductivity of the 2-T argon plasma. It

is found that although the reactive thermal conductivity

expressions derived by the two approaches are different

in their formulations, sample calculations give com-

pletely the same values of the reactive thermal conduc-

tivity. However, it is also found that the Approach 1

requires appreciably less numerical effort than that in-

volved in the Approach 2, if a personal computer is

employed. It is because that more complex matrix cal-

culation is involved in the Approach 2. Hence, the re-

active thermal conductivity expressions deduced using

the Approach 1, i.e. Eq. (42) and its auxiliary equations,

are used in the following to calculate the values of the

reactive thermal conductivity for the 2-T argon plasma.

The calculated values are then compared with previous

results, especially with those presented in Ref. [5].

As mentioned in Section 1, the author of Ref. [5] used

the same expression as that employed in Refs. [1,2] to

calculate the reactive thermal conductivity of the 2-T

argon plasma. However, the expression presented in

Refs. [1,2] is only applicable to a single-temperature

plasma. The calculated results obtained by the present

modified approach, i.e. using Eq. (42) and its auxil-

iary equations, are compared with those presented in

Ref. [5].
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The calculated results show that for the special case

that the plasma is in the LTE state, the present modified

approach gives the same calculated values of the reactive

thermal conductivity given by Ref. [5], as shown in Fig.

1(a). For this case of single-temperature system, the

present modified approach reduces to be the same like

that given by Hsu [5] or by Devoto [1] if the LTE state is

concerned.

However, the present modified approach gives dif-

ferent predicted results from those in Ref. [5] for the

reactive thermal conductivity when the electron/heavy-

particle temperature ratio h is not equal to 1 (i.e.

Te 6¼ Th), and the difference increases with the increase of

h, as shown in Fig. 1(b)–(d), the difference becomes quite

significant at high electron/heavy-particle temperature

ratios.

In order to check what is the source for the increasing

difference between the calculated results of the reactive

thermal conductivity by the present study and by Ref. [5]

at larger electron/heavy-particle temperature ratios, nu-

merical experiments are performed for the following

four cases:

Case 1: Employ the Saha equations (6a) and (6b)

[with the power of 1=h] and the formula for the reactive

thermal conductivity presented in Refs. [1,3,5,8] (with-

out modification for the 2-T plasma) to calculate the

reactive thermal conductivity of the 2-T argon plasma.

This case corresponds to the approach used by Hsu [5].

Case 2: Employ the Saha equations (6a) and (6b)

[with the power of 1=h] and the formula for the reactive

thermal conductivity derived in this paper [Eq. (42) and

its auxiliary equations, with modification for the 2-T

plasma] to calculate the reactive thermal conductivity

of the 2-T argon plasma.

Case 3: Employ the Saha equations (5a) and (5b)

[without the power of 1=h] and the formula for the re-

active thermal conductivity presented in Refs. [1,3,5,8]

(without modification for the 2-T plasma) to calculate

the reactive thermal conductivity of the 2-T argon

plasma.
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Fig. 1. Comparison of the calculated values of the reactive thermal conductivity for different electron/heavy-particle temperature

ratios. Argon plasma at atmospheric pressure; continuous lines––by the present study; circles––by Hsu [5]. (a) h ¼ 1; (b) h ¼ 3; (c)

h ¼ 5; (d) h ¼ 10.
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Case 4: Employ the Saha equations (5a) and (5b)

[without the power of 1=h] and the formula for the re-

active thermal conductivity presented in this paper [Eq.

(42) and its auxiliary equations, with modification for

the 2-T plasma] to calculate the reactive thermal con-

ductivity of the 2-T argon plasma. This case represents

the approach employed in the present study.

For the four different cases, the calculated number

densities of atoms, singly-ionized ions, doubly-ionized

ions and electrons of the 2-T argon plasma with h ¼ 5

are plotted in Fig. 2(a)–(d), respectively, whereas the

calculated reactive thermal conductivities are shown in

Fig. 3. It is seen from Fig. 2(a)–(d) that the effect due to

employing different Saha equations (Eqs. (5a), (5b) or

Eqs. (6a), (6b)) on the number densities of atoms, ions

and electrons cannot be ignored, especially for the

doubly-ionized ion number density, different values of

thermodynamic and transport properties (including the

reactive thermal conductivity) are expected to be de-

duced. From the values of the reactive thermal con-

ductivity obtained for the four different cases (Fig. 3),

two conclusions can be obtained: (1) the effect of the

difference in calculated species number densities due to

employing different Saha equations on the reactive

thermal conductivity cannot be neglected, this can be

drawn from the comparison of the calculated results for

the Case 1 with those for the Case 3 (or for the Case 2

with those for the Case 4), (2) the values of the reactive

thermal conductivity predicted by the present modified

approach (using Eq. (42) and its auxiliary equations) are

appreciably smaller than those by the approach used in

Ref. [5] when the electron temperature is higher than the

heavy-particle temperature even the same plasma com-

position is used in the calculation, this can be drawn

from the comparison of the calculated results for the

Case 1 and the Case 2, or for the Case 3 and Case 4.

Although the derivation for the reactive thermal

conductivity of 2-T plasma presented in this paper is

concerned with the 2-T argon plasma. It is easy to ex-

tend the derivation to other 2-T plasmas with other

monatomic gas as the working gas. In addition, only

single- and double-ionization reactions are considered in

this study. When triple-ionization is involved, much

more numerical efforts will be required, although the

present study can be extended to this more complicated

case.
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Fig. 2. Comparison of the particle number densities calculated by Eqs. (5a) and (5b) used in Case 3 or Case 4 (this study) with those by

Eqs. (6a) and (6b) used in Case 1 (or Ref. [5]) and Case 2 for the 2-T argon plasma at atmospheric pressure and with h ¼ 5. Continuous

lines––this study; dash lines––by Hsu [5]. (a) Argon atom number density; (b) singly-ionized argon ion number density; (c) doubly-

ionized argon ion number density; (d) electron number density.
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6. Conclusions

The expressions of the reactive thermal conductivity

have been derived by use of two different approaches for

the 2-T argon plasma. The Saha equations and the

species diffusion velocities modified to the 2-T plasma

have been employed in the derivation. The calculated

results for the 2-T argon plasma show that the two ap-

proaches give the same calculated results of the reactive

thermal conductivity.

For the special case with equal electron and heavy-

particle temperatures, the present results are identical to

those presented by Hsu [5]. However, the difference be-

tween the calculated values of the reactive thermal

conductivity by the present study and by Hsu [5] in-

creases with increasing electron/heavy-particle tempera-

ture ratio. The difference becomes quite significant at

high electron/heavy-particle temperature ratios.
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Fig. 3. Comparison of the calculated values of the reactive

thermal conductivity of the 2-T argon plasma at atmospheric

pressure for four different cases. Case 1––Using the Saha
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